Electron paramagnetic resonance and optical spectroscopy of Yb^{3+} ions in SrF_{2} and BaF_{2}; an analysis of distortions of the crystal lattice near Yb^{3+}

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2003 J. Phys.: Condens. Matter 152833
(http://iopscience.iop.org/0953-8984/15/17/332)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.119
The article was downloaded on 19/05/2010 at 08:53

Please note that terms and conditions apply.

Electron paramagnetic resonance and optical spectroscopy of $\mathbf{Y b}^{3+}$ ions in SrF_{2} and BaF_{2}; an analysis of distortions of the crystal lattice near $\mathbf{Y b}^{\mathbf{3 +}}$

M L Falin ${ }^{1}$, K I Gerasimov ${ }^{1}$, V A Latypov ${ }^{1}$ and A M Leushin ${ }^{2}$
${ }^{1}$ Zavoisky Physical-Technical Institute, Kazan 420029, Russia
${ }^{2}$ Kazan State University, Kazan 420008, Russia
E-mail: falin@kfti.knc.ru

Received 18 December 2002
Published 22 April 2003
Online at stacks.iop.org/JPhysCM/15/2833

Abstract

SrF_{2} and BaF_{2} crystals, doped with the Yb^{3+} ions, have been investigated by electron paramagnetic resonance and optical spectroscopy. As-grown crystals of SrF_{2} and BaF_{2} show the two paramagnetic centres for the cubic $\left(\mathrm{T}_{\mathrm{c}}\right)$ and trigonal $\left(\mathrm{T}_{4}\right)$ symmetries of the Yb^{3+} ions. Empirical diagrams of the energy levels were established and the potentials of the crystal field were determined. Information was obtained on the SrF_{2} and BaF_{2} phonon spectra from the electron-vibrational structure of the optical spectra. The crystal field parameters were used to analyse the crystal lattice distortions in the vicinity of the impurity ion and the F^{-}ion compensating for the excess positive charge in T_{4}. Within the frames of a superposition model, it is shown that three F^{-}ions from the nearest surrounding cube, located symmetrically with respect to the C_{3} axis from the side of the ion-compensator, approach the impurity ion and cling to the axis of the centre when forming T_{4}. The F^{-}ion located on the axis of the centre between the Yb^{3+} ion and ion-compensator, also approaches close to the impurity ion.

1. Introduction

Crystals with fluorite structure MeF_{2} (where Me is $\mathrm{Cd}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Pb}, \mathrm{Ba}$), doped with rare-earth ions, are of interest due to the fact that, on the one hand, they find wide use (laser working media, scintillation materials, superionic conductors etc) and, on the other hand, they are convenient model systems for studying the magneto-optical properties of impurity paramagnetic ions. The Yb^{3+} ion has the most simple energy level diagram compared with other rare-earth ions. It consists of the ${ }^{2} \mathrm{~F}_{7 / 2}$ ground level and the ${ }^{2} \mathrm{~F}_{5 / 2}$ excited level, $10^{4} \mathrm{~cm}^{-1}$ away from the ground level. This feature of the ytterbium ion makes it attractive for investigations of optical properties.

In the fluorite homological series, the Yb^{3+} ions were best investigated in CaF_{2} (by electron paramagnetic resonance (EPR), electron-nuclear double-resonance (ENDOR) and optical spectroscopy). However, complicated absorption and luminescence spectra and, accordingly, the complicated Stark structure of a large number of paramagnetic centres (PCs) formed in this crystal, have not been unambiguously interpreted up to now [1-4]. At the same time, the optical data for the Yb^{3+} ions in other MeF_{2} crystals are practically absent. Unlike CaF_{2}, these crystals are not multi-central, which simplifies the identification of optical spectral lines. For example, the Yb^{3+} ions in SrF_{2} and BaF_{2} form only two PCs during the crystal growth: of cubic $\left(\mathrm{T}_{\mathrm{c}}\right)$ and trigonal $\left(\mathrm{T}_{4}\right)$ symmetries [4]. In the latter case, the compensation for the excess positive charge occurs with the additional ion of fluorine in the centre of the free cube nearest to the Yb^{3+} ion along the C_{3} axis. By means of thermal processing (hydrolysis), these centres are partly transformed to PCs of trigonal symmetry T_{2}, where the oxygen ion replaces one of the fluorine ions in the nearest cubic surrounding of Yb^{3+} [2]. So, the number of the PCs in SrF_{2} and BaF_{2} can be increased up to 3. Since this process is controlled, the additional way appears to identify the optical spectral lines.

Previously we investigated the Yb^{3+} ion in $\mathrm{PbF}_{2}\left(\mathrm{~T}_{\mathrm{c}}\right)$ [5] and $\mathrm{SrF}_{2}\left(\mathrm{~T}_{2}\right)$ [6]. This work presents the results of the further EPR and optical investigations of the Yb^{3+} ion forming T_{c} and $\mathrm{T}_{4} \mathrm{PCs}$ in SrF_{2} and BaF_{2} crystals.

2. Experimental results

The $\mathrm{SrF}_{2}\left(\mathrm{BaF}_{2}\right)$ crystals were grown by the Bridgman-Stockbarger method in graphite crucibles in a fluorine atmosphere. We used crystals with ytterbium concentrations of 0.05, $0.1,0.2,0.5,1 \%$ for SrF_{2} and $0.01,0.05,0.1,0.2 \%$ for BaF_{2}. The measurements were carried out on a modified ERS-231 spectrometer (Berlin, Centre for Scientific Instruments) [7] at $T=4.2 \mathrm{~K}$. Optical spectra at $T=2,77$ and 300 K and magnetic circular dichroism (MCD) spectra at $T=2 \mathrm{~K}$ were recorded on a home-made multifunctional spectrometer [8]. The luminescence of the crystals was excited by the light of a xenon lamp (power 1 kW), passing through a red glass filter. Luminescence excitation spectra were corrected on the spectrum of the lamp radiation. A semiconductor laser diode ATC-C1 000-100-TMF-965 (St Petersburg) of 1 W was used as a source of a laser selective excitation (LSE) with laser linewidth of the order of 2 nm and the laser emission wavelength tunable from $963 \mathrm{~nm}\left(10381 \mathrm{~cm}^{-1}\right)$ to 969 nm ($10317 \mathrm{~cm}^{-1}$).

The angular dependences of the EPR spectra on a magnetic field H rotated in the (110) plane show the presence of two $\mathrm{Yb}^{3+} \mathrm{PCs}$ of different symmetry, T_{c} and T_{4}, in all SrF_{2} and BaF_{2} crystals used in this work. The EPR spectra of these centres are well known and consequently not given here. The values of the spin Hamiltonian parameters (g-factors and the hyperfine constants) for the PCs obtained in our EPR experiments coincided with those published in [1-4]. Therefore we give the literature data in the tables below.

Figure $1(\mathrm{~B})$ and (A) show the spectra of the luminescence and luminescence excitation, respectively, in SrF_{2} crystals with Yb^{3+} concentration $c=0.05 \%$ at $T=2 \mathrm{~K}$; (C) and (D) show the corresponding spectra for BaF_{2} crystals with Yb^{3+} concentration $c=0.01 \%$. Arrows with a numbered labels show the spectral lines supposedly corresponding to T_{c} and T_{4}. These marks correspond to those of optical transitions in the diagrams of energy levels in figure 1 (inset). Since at $T=2 \mathrm{~K}$ there are no spectral lines in the luminescence spectra at the frequencies higher than $10360 \mathrm{~cm}^{-1}$ or the luminescence excitation spectra at the frequencies lower than $10180 \mathrm{~cm}^{-1}$, these regions are not shown in figure 1 . As one can see from these spectra, the number of the lines observed exceeds the number of electron transitions predicted for T_{c} and T_{4} from symmetry considerations. This is due to the fact that the Yb^{3+} ion optical spectra

Figure 1. Luminescence (B, C) and luminescence excitation (A, D) spectra of $\mathrm{Yb}^{3+}(c=0.05 \%)$ in $\mathrm{SrF}_{2}(\mathrm{~A}, \mathrm{~B})$ and $\mathrm{Yb}^{3+}(c=0.01 \%)$ in $\mathrm{BaF}_{2}(\mathrm{C}, \mathrm{D})$ at $T=2 \mathrm{~K}$. Here and in figures $2-5$, numbering of spectral lines corresponds to the numbering of transitions in the inset. Arrows with a symbol ' f ' denote the electron-vibrational transitions.

Figure 2. Fragments of the luminescence excitation spectra in the $\operatorname{SrF}_{2}: \mathrm{Yb}^{3+}$ with Yb^{3+} concentrations equal to 0.05% (A1), 0.01% (A2), 0.2% (A3) and 0.5% (A4) at $T=2 \mathrm{~K}$.
always have a distinct electron-vibrational character and some of the lines are the phonon satellites of purely electron transitions. The arrows with symbol ' f ' in figure 1 designate the most intensive electron-vibrational transitions. Table 1 shows the phonon frequencies in the observed electron-vibrational spectra of the luminescence excitation and luminescence.

Figures 2 and 3 show the fragments of the luminescence excitation spectra for different concentrations of the Yb^{3+} ion in SrF_{2} and BaF_{2} crystals, respectively. These spectra are measured with resolution of about $3 \mathrm{~cm}^{-1}$. In the region of $10360 \mathrm{~cm}^{-1}$ two narrow and sufficiently intensive lines with frequencies of 10358 and $10361 \mathrm{~cm}^{-1}$ are observed in the luminescence excitation and luminescence spectra of the $\mathrm{SrF}_{2}: \mathrm{Yb}^{3+}$ crystal at 2 K . To attribute optical spectral lines to T_{c} and T_{4} the following method was used. The concentration

Figure 3. Fragments of the luminescence excitation spectra in the $\mathrm{BaF}_{2}: \mathrm{Yb}^{3+}$ with Yb^{3+} concentrations equal to 0.01% (D1), 0.05% (D2), 0.1% (D3) and 0.2% (D4) at $T=2 \mathrm{~K}$. In the inset, the fragment of the MCD spectrum in $\mathrm{BaF}_{2}: \mathrm{Yb}^{3+}(c=0.2 \%)$ at $H=300 \mathrm{mT}$ and $T=2 \mathrm{~K}$ is shown.

Table 1. Phonon frequencies in the luminescence excitation and luminescence spectra of T_{c} and T_{4} in SrF_{2} and BaF_{2}

Crystal	Temperature (K)	Electron transitions	Phonon frequencies $\left(\mathrm{cm}^{-1}\right)$	Satellite type

dependences of the intensity ratios of the optical lines were compared with the analogous dependences of the EPR lines of the even Yb^{3+} isotopes of T_{c} and T_{4}. To this end we measured the EPR spectra of the crystals $\mathrm{SrF}_{2}: \mathrm{Yb}^{3+}(c=0.05,0.1,0.2,0.5 \%)$ and $\mathrm{BaF}_{2}: \mathrm{Yb}^{3+}(c=0.01$, $0.05,0.1,0.2 \%$) for $H \|[111]$. The qualitative dependences of the EPR intensity ratios of T_{c} and T_{4} for the SrF_{2} and BaF_{2} crystals are presented in figures 4 and 5. Figure 4 also shows the change of the $10358 \mathrm{~cm}^{-1}$ line intensity with respect to the $10361 \mathrm{~cm}^{-1}$ line intensity, depending on the Yb^{3+} ion concentration. The concentration dependence of the intensity ratio of optical lines with frequencies of 10358 and $10361 \mathrm{~cm}^{-1}$ is close to that for the EPR intensity ratio of T_{c} and T_{4}. From this fact we can conclude that the $10358 \mathrm{~cm}^{-1}$ line corresponds to the 3^{c} transition for T_{c}, while the $10361 \mathrm{~cm}^{-1}$ line corresponds to the 4^{t} transition for T_{4}. In the region of $10340 \mathrm{~cm}^{-1}$ only one line is observed in the luminescence

Figure 4. Concentration dependences of the ratios of the $\mathrm{Yb}^{3+} E P R$ intensities for T_{c} and T_{4} in SrF_{2} (O) and of those of the excitation luminescence intensities of lines with the frequencies: 10358 and $10361 \mathrm{~cm}^{-1}(\square), 10792$ and $10804 \mathrm{~cm}^{-1}(\bullet), 10792$ and $10814 \mathrm{~cm}^{-1}(\square)$ and 10814 and $10804 \mathrm{~cm}^{-1}(\mathbf{\Delta})$.
excitation and luminescence spectra of the $\mathrm{BaF}_{2}: \mathrm{Yb}^{3+}$ crystal. However, the shape of this line in the samples with a Yb^{3+} ion concentration of 0.01 and 0.2% makes it possible to suppose that this line consists of two unresolved components. If a xenon lamp is used as a source of luminescence excitation, then the sensitivity of our spectrometer does not allow measurements of the excitation luminescence spectra with a resolution higher than $3 \mathrm{~cm}^{-1}$. As MCD in some cases has a higher resolution, the MCD spectrum in the region of $10340 \mathrm{~cm}^{-1}$ was measured. The MCD spectrum for the $\mathrm{BaF}_{2}: \mathrm{Yb}^{3+}$ crystal $(c=0.2 \%)$ at $H=300 \mathrm{mT}$ is presented in the inset to figure 3. In the MCD spectrum two components of the line were resolved and the distance between them is about $2 \mathrm{~cm}^{-1}$. Figure 5 shows the numerical approximation of the luminescence excitation line at $10340 \mathrm{~cm}^{-1}$ on the basis of two Voight's profiles with frequencies of 10339 and $10341 \mathrm{~cm}^{-1}$ for various concentrations of the Yb^{3+} ion. This approximation is given as a ratio of the line intensity with frequency $10339 \mathrm{~cm}^{-1}$ to that with frequency $10341 \mathrm{~cm}^{-1}$. The comparison with the EPR data enabled us to conclude that the $10339 \mathrm{~cm}^{-1}$ line corresponds to the 3^{c} transition for T_{c}, while the $10341 \mathrm{~cm}^{-1}$ line corresponds to the 4^{t} transition for T_{4}. The numerical approximation of the group of the 10780-10 $820 \mathrm{~cm}^{-1}$ lines for SrF_{2} and $10720-10790 \mathrm{~cm}^{-1}$ lines for BaF_{2} is made in a similar way.

Figures 4 and 5 show the ratios of the line intensities associated with T_{c} and T_{4} for SrF_{2} and BaF_{2}, respectively. The character of the presented dependences for $\mathrm{SrF}_{2}: \mathrm{Yb}^{3+}$ crystals allows us to assume that the 10803 and $10813 \mathrm{~cm}^{-1}$ lines belong to T_{4} (the 5^{t} and 6^{t} transitions, respectively), while the line with frequency $10789 \mathrm{~cm}^{-1}$ corresponds to T_{c}. For the BaF_{2} crystals within the $10720-10790 \mathrm{~cm}^{-1}$ region, only two lines of the luminescence excitation were observed. The analysis of the dependences given in figure 2 shows that the $10739 \mathrm{~cm}^{-1}$ line of the luminescence excitation belongs to T_{c} (the 4^{c} transition) and the $10757 \mathrm{~cm}^{-1}$ line belongs to T_{4} (the 6^{t} transition). The line of the luminescence excitation, corresponding to the 5^{t} transition, most probably coincides with the frequency of the 4^{c} transition or is close to it. This is supported by the fact that the line of luminescence excitation with frequency $10739 \mathrm{~cm}^{-1}$ is also observed at a very low relative concentration of T_{c}, for example, for the $\mathrm{BaF}_{2}: \mathrm{Yb}^{3+}$ crystal, $c=0.05 \%$. To confirm these results, attempts were made to redistribute the

Figure 5. Concentration dependences of the ratios of the $\mathrm{Yb}^{3+} E P R$ intensities for T_{c} and T_{4} in $\mathrm{BaF}_{2}(\mathrm{O})$ and of those of the luminescence excitation intensities of lines with the frequencies: 10339 and $10341 \mathrm{~cm}^{-1}(\square)$ and 10742 and $10758 \mathrm{~cm}^{-1}(\bigcirc)$.

Figure 6. EPR spectra in $\mathrm{SrF}_{2}: \mathrm{Yb}^{3+}(c=0.2 \%)$ before and after annealing. $\boldsymbol{H} \|$ [111], $v=9.35 \mathrm{GHz}, T=4.2 \mathrm{~K}$.
relative concentrations of PCs of cubic and trigonal symmetries. To this end, the samples were annealed (i.e. they were heated up to $850^{\circ} \mathrm{C}$ in air for several hours and then they were quickly cooled to room temperature). Another stable PC, T_{2}, was formed in all samples. Considerable redistribution of the T_{c} and T_{4} relative concentrations were observed in the $\mathrm{SrF}_{2}: \mathrm{Yb}^{3+}$ crystal. Its EPR spectra before and after annealing are presented in figure 6. Spectra fragments of the luminescence excitation in the $\mathrm{SrF}_{2}: \mathrm{Yb}^{3+}$ crystal before and after the annealing are shown in figure 7. The change of the relative intensities of the luminescence excitation lines, as a result of the redistribution of the T_{c} and T_{4} relative concentrations, confirms the assumption that the luminescence excitation line with frequency $10789 \mathrm{~cm}^{-1}$ corresponds to T_{c}, while the lines with frequencies 10803 and $10813 \mathrm{~cm}^{-1}$ belong to T_{4}.

As shown in energy level diagram (see the inset to figure 1), two luminescence lines belonging to T_{c} and three belonging to T_{4} should be observed in luminescence spectra apart from the lines corresponding to the 3^{c} and 4^{c} transitions. In fact, in all samples one can observe only three intensive lines. Since these lines remain sufficiently intensive in the samples with the lowest relative concentration of T_{c} as well (according to EPR data), they should be attributed

Figure 7. Fragments of the luminescence excitation spectra in $\mathrm{SrF}_{2}: \mathrm{Yb}^{3+}(c=0.2 \%)$ at $T=2 \mathrm{~K}$ before and after annealing.
to the $1^{\mathrm{t}}, 2^{\mathrm{t}}$ and 3^{t} transitions for T_{4}. On the basis of the interpretation of the excitation luminescence spectra one can see that, as the crystal field symmetry lowers from cubic to trigonal, the splits of the quartet into ${ }^{2} \Gamma_{5}$ and ${ }^{2} \Gamma_{4}$ are small enough. This observation agrees well with the fact that, in the case of T_{4}, the additional ion, F^{-}, located at the nearest free cell along the C_{3} axis, i.e. far enough away from the Yb^{3+} ion, is a compensator for the excess positive charge. Therefore, the distortions of the cube surrounding the Yb^{3+} ion should be not large. Therefore one can assume that in the T_{4} ground multiplet, the positions of the ${ }^{1} \Gamma_{4}$ and ${ }^{3} \Gamma_{4}$ levels should not differ very much from the locations of the Γ_{6} and Γ_{8} levels, respectively, for T_{c}. In other words, the positions of the 1^{c} and 2^{c} luminescence lines may coincide or be close in frequency to the positions of the 1^{t} and 3^{t} lines, respectively. In the annealed $\mathrm{SrF}_{2}: \mathrm{Yb}^{3+}$ crystal ($c=0.2 \%$) one observes a broadening and a small shift (of the order of $1 \mathrm{~cm}^{-1}$) of the line, corresponding to the 3^{t} transition in the luminescence spectrum. From this, one may assume that the luminescence line associated with the 2^{c} transition is about $1 \mathrm{~cm}^{-1}$ lower in frequency with respect to the line associated with the $3^{\text {t }}$ transition. In the $\mathrm{BaF}_{2}: \mathrm{Yb}^{3+}$ crystal $(c=0.01 \%)$ with the largest relative concentration of PCs of the cubic symmetry, a weak luminescence line is also observed with a frequency of $9804 \mathrm{~cm}^{-1}$ which can be attributed to the 2^{c} transition. However, the lines, corresponding to the 1^{c} transition (${ }^{2} \Gamma_{7} \rightarrow \Gamma_{6}$), were not registered in either the SrF_{2} or BaF_{2} crystals at the xenon lamp excitation of the luminescence. This is not surprising. This line has to be of low intensity because, due to the magnetic (or electric) dipole nature of the transitions, this line is forbidden according to the selection rules. The absence of such a luminescence line was also noticed in the $\mathrm{CaF}_{2}: \mathrm{Yb}^{3+}$ crystal [4, 9]. Its observation in the $\mathrm{PbF}_{2}: \mathrm{Yb}^{3+}$ crystal is probably due to the enhancement of the electron-lattice interaction in the PbF_{2} compared to the complexes under consideration [5]. To detect the luminescence lines belonging to the transition 1^{c} and to confirm the interpretation of transitions 2^{c} in $\mathrm{BaF}_{2}: \mathrm{Yb}^{3+}$ and $\mathrm{SrF}_{2}: \mathrm{Yb}^{3+}$, an experiment on LSE luminescence was carried out. The fragments of the LSE luminescence spectra in the $\mathrm{BaF}_{2}: \mathrm{Yb}^{3+}$ and $\mathrm{SrF}_{2}: \mathrm{Yb}^{3+}$ crystals of the 3^{c} and 4^{t} transitions are given in figures 8 and 9 . In the $\mathrm{BaF}_{2}: \mathrm{Yb}^{3+}$ crystal at LSE of the 3^{c} transition, two luminescence lines with frequencies 9796 and $9816 \mathrm{~cm}^{-1}$ were observed in addition to the 2^{c} transition identified previously. The first line can be attributed to the 1^{c} transition. The second line is evidence for the probable presence in the crystal of another

Figure 8. Fragments of the luminescence spectra in $\mathrm{BaF}_{2}: \mathrm{Yb}^{3+}(c=0.01 \%)$ with LSE at the frequencies $10341 \mathrm{~cm}^{-1}(\mathrm{C} 1)$ and $10339 \mathrm{~cm}^{-1}(\mathrm{C} 2)$ at $T=2 \mathrm{~K}$.

Figure 9. Fragments of the luminescence spectra in $\operatorname{SrF}_{2}: \mathrm{Yb}^{3+}(c=0.2 \%)$ with LSE at the frequencies of $10361 \mathrm{~cm}^{-1}$ (B1) and $10358 \mathrm{~cm}^{-1}$ (B2) at $T=2 \mathrm{~K}$.

PC with concentration too small to be registered by EPR. The frequency of the transition from lowest level of the excited multiplet to the ground state of this PC is very close to the frequency of the 3^{c} transition. In the $\mathrm{SrF}_{2}: \mathrm{Yb}^{3+}$ crystal at the LSE of the 3^{c} transition a weak luminescence line with a frequency of $9758 \mathrm{~cm}^{-1}$ was observed in addition to the 2^{c} transition. This line can be attributed to the 1^{c} transition. However, the weak intensity of this line in SrF_{2} and the presence of the additional line in BaF_{2}, mentioned above, lead to ambiguity in the interpretation of the 1^{c} transitions. Therefore, in the further theoretical interpretation of the experimental results we will consider two variants. The first variant (I) corresponds to the case when these luminescence lines were not taken into consideration, i.e. the 1^{c} transition remains undetermined. In the second variant (II), the luminescence lines with the frequencies $9758 \mathrm{~cm}^{-1}$ for the SrF_{2} and $9796 \mathrm{~cm}^{-1}$ for the BaF_{2} crystals are attributed to the 1^{c} transition. Experimental results for the complexes under consideration are given in tables 1-3.

Table 2. Energy levels (in cm^{-1}) and g-factors of T_{c} in SrF_{2} and BaF_{2}.

J	Symmetry and g-factors	SrF_{2}				BaF_{2}			
		Experiment		Theory		Experiment		Theory	
		I	II	I	II	I	II	I	II
5/2	${ }^{2} \Gamma_{8}$	10783	10783	10783	10783	10739	10739	10739	10737
	${ }^{2} \Gamma_{7}$	10358	10358	10358	10370	10339	10339	10339	10356
7/2	Γ_{6}		600	625	607		542	585	556
	${ }^{1} \Gamma_{8}$	586	586	586	584	535	535	535	539
	${ }^{1} \Gamma_{7}$			0		0		0	
	$g\left({ }^{1} \Gamma_{7}\right)$	$\|3.441\|$		3.479	3.480		422\|	3.476	3.477

Table 3. Energy levels (in cm^{-1}) and g-factors of T_{4} in SrF_{2} and BaF_{2}.

J	Symmetry and g-factors	SrF_{2}		BaF_{2}					
		Experiment	Theory	Experiment	Theory				
5/2	${ }^{5} \Gamma_{4}$	10813	10814	10757	10757				
	${ }^{2} \Gamma_{56}$	10802	10802	10739	10739				
	${ }^{4} \Gamma_{4}$	10361	10370	10341	10345				
7/2	${ }^{3} \Gamma_{4}$	635	642	582	585				
	${ }^{2} \Gamma_{4}$	608	611	562	564				
	${ }^{1} \Gamma_{56}$	583	586	530	531				
	${ }^{1} \Gamma_{4}$	0	0	0	0				
	$g_{\\| \\|}\left({ }^{1} \Gamma_{4}\right)$	\|2.811		2.811	\|2.763		2.771		
	$g_{\perp}\left({ }^{1} \Gamma_{4}\right)$	\|3.743		-3.807	\|3.768		-3.820		

3. Analysis of the crystal field parameters and the estimation of the lattice local distortions

3.1. Determining the potentials of crystal fields

To interpret the experimental values of the energy levels and g-factors presented in tables 2 and 3 , the energy matrix, considering the spin-orbit interaction and the interaction with a crystal field, for the Yb^{3+} crystal (configuration $4 f^{13}$, term ${ }^{2} \mathrm{~F}$), was formed. The Hamiltonian of the spin-orbit interaction was used in the form $H_{\mathrm{so}}=-\xi(\boldsymbol{S L})$ where ξ is the spin-orbit interaction parameter and S and L are the operators of the spin and orbital moment of the Yb^{3+} ion, respectively. The interaction of the Yb^{3+} ion with the crystal field for the PC of T_{c} was described by the Hamiltonian $H_{\text {cr }}\left(\mathrm{O}_{\mathrm{h}}\right)=B_{4}\left(V_{4}^{0}+5 V_{4}^{4}\right)+B_{6}\left(V_{6}^{0}-21 V_{6}^{4}\right)$, where the Descartes coordinates of the 4 f -electrons in harmonic polynomials V_{k}^{q} [10] were related to the cubic axes of the crystal. The Hamiltonian for T_{4} has the form: $H_{\mathrm{cr}}\left(\mathrm{C}_{3 \mathrm{v}}\right)=B_{2}^{0} V_{2}^{0}+B_{4}^{0} V_{4}^{0}+B_{4}^{3} V_{4}^{3}+B_{6}^{0} V_{6}^{0}+B_{6}^{3} V_{6}^{3}+B_{6}^{3} V_{6}^{3}$. In order to fix the signs of the B_{4}^{3} and B_{6}^{3} parameters, the axis z of the system of coordinates used was matched to the symmetry axis of the centre. The two other axes were directed in such a way that one of the fluorine ions in the near vicinity was in the positive quadrant of the $z \mathrm{O} x$ plane. (The location of the T_{4} axes with respect to the cubic axes corresponded to that of Watanabe [11].) From the diagonalization of the matrix of the Hamiltonian $H_{\mathrm{so}}+H_{\mathrm{cr}}$, the theoretical energy levels and wavefunctions were determined. The wavefunctions of the ground-state Kramers doublet were used then to calculate the g-factors of the spin

Figure 10. Deformation structural model of T_{4}

Hamiltonian $\beta \boldsymbol{H} g \boldsymbol{S}^{\prime}$, where \boldsymbol{H} is the magnetic field strength and \boldsymbol{S}^{\prime} is the effective $S^{\prime}=1 / 2$ spin operator of the Yb^{3+} ion. Matrix elements of the Zeeman interaction Hamiltonian $H_{z}=\beta \boldsymbol{H}\left(\boldsymbol{L}+g_{\mathrm{s}} \boldsymbol{S}\right)$, where β is the Bohr magneton and $g_{\mathrm{s}}=2.00232$ is the g-factor of a free electron, diagonal with respect to total moment J, were calculated taking into account the Lande g-factors of the corresponding multiplets ($g_{7 / 2}=6 / 7+g_{\mathrm{s}} / 7, g_{5 / 2}=8 / 7-g_{\mathrm{s}} / 7$). The off-diagonal matrix elements were found by the Wigner-Eckart theorem with the reduced element $\left({ }^{2} \mathrm{~F}_{7 / 2}\left\|L+g_{s} S\right\|{ }^{2} \mathrm{~F}_{5 / 2}\right)=4\left(g_{\mathrm{s}}-1\right) \sqrt{3 / 14}$. Then five theoretical quantities for T_{c} (the g-factor and four energy differences) and eight quantities for T_{4} (two g-factors and six energy differences) were least-squares fitted to the corresponding experimental values to find the best-fit values of g-factors, crystal field and spin-orbit interaction parameters [12]. Tables 2-5 give the results of approximation. The maximal standard deviation of the theoretical values of the energy levels from the experimental ones is less than $13 \mathrm{~cm}^{-1}$. The values of the g-factors of T_{4} are described well enough, however, the differences of the theoretical g factors from their experimental values for T_{c} the same as in the $\mathrm{PbF}_{2}: \mathrm{Yb}^{3+}$ crystal [5], were considerably larger than the experimental error. The weak anisotropy of the g-factors of T_{4} shows that its crystal field does not differ very much from that of T_{c} (table 5).

The $g_{\|}$and g_{\perp} values of T_{4} agree very well with the fact that the doublet, originating from the doublet ${ }^{1} \Gamma_{7}$ of T_{c}, is the lowest Kramers doublet. However, it should be kept in mind when calculating the mean g-factor of this doublet \tilde{g} that, at the transition of the wavefunctions of the Γ_{7} representation of the O_{h} group into the wavefunctions of the Γ_{4} representation of the $\mathrm{C}_{3 \mathrm{v}}$ group, the functions change places and one of them changes sign. So, for the \tilde{g} of the T_{4}, for example, in SrF_{2}, we will have $\tilde{g}=\left[g_{\|}+2\left(-g_{\perp}\right)\right] / 3=3.476$. The crystal field parameters for T_{c} in the SrF_{2} and BaF_{2} crystals agree both in the sign and value with the parameters of the similar centres in the CaF_{2} [9] and PbF_{2} [5] crystals and follow the general tendency to decrease as the lattice constant a_{0} increases. Potentials of T_{c} in the SrF_{2} and BaF_{2} crystals also agree well with each other.

3.2. Structure of T_{4}

Table 5 shows that the crystal field parameters for T_{4} and $\mathrm{T}_{\mathrm{c}}^{\text {trig }}$ in SrF_{2} and BaF_{2} crystals are very close to each other. The crystal field on the paramagnetic ion is determined mainly by
the electrostatic and contact interactions of the Yb^{3+} ion with the nearest fluorine ions. Due to this fact, one can suppose that when the T_{4} is formed, the positions of F^{-}ions are essentially the same as those they occupied in T_{c}. Investigations of such centres in SrF_{2} and BaF_{2} crystals by the radio-frequency discrete saturation method (see, e.g., [13] and [14], respectively) show that only the ${ }^{19} \mathrm{~F}$ nuclei, located close to the ion-compensator $\left(\mathrm{F}_{9}\right)$ are notably shifted, and that the vicinity of the Yb^{3+} ion can be separated into two regions (figure 10). In the first region (not containing F_{9}) the positions of the fluorine ions of the first $\left(\mathrm{F}_{1}-\mathrm{F}_{4}\right)$ and distant coordinate spheres do not practically differ from their coordinates in the T_{c}. In the second region (containing F_{9}), the fluorine ions of the first $\left(\mathrm{F}_{5}-\mathrm{F}_{8}\right)$, second $\left(\mathrm{F}_{10}-\mathrm{F}_{12}\right)$ and third $\left(\mathrm{F}_{13}-\mathrm{F}_{15}\right)$ coordinate spheres, and the ion-compensator F_{9} are shifted. To estimate the quantitative lattice crystal distortion near the impurity ion, the superposition model (SM) [1517] was used on the basis of the obtained qualitative structure of the T_{4} complexes of the Yb^{3+} ion. This model postulates that the total crystal field is the linear superposition of the fields generated by each crystal ion. The resultant parameters of the crystal field are presented then in the form:

$$
\begin{equation*}
B_{k}^{q}=\sum_{i} K_{k}^{q}\left(\vartheta_{i}, \phi_{i}\right) \bar{B}_{k}\left(R_{i}\right) \tag{1}
\end{equation*}
$$

where $K_{k}^{q}\left(\vartheta_{i}, \phi_{i}\right)$ are the structure factors depending on the angular positions (determined by the spherical angles ϑ_{i} and ϕ_{i}) of all ions located at a distance R_{i} from the paramagnetic ion (the most complete table of their expressions is given in [18]); $\bar{B}_{k}\left(R_{i}\right)$ are the intrinsic parameters depending on the type of ligands. In practice, it is usually assumed that the dependence of the $\bar{B}_{k}\left(R_{i}\right)$ parameters on R_{i} obeys the following law in a limited range of distances:

$$
\begin{equation*}
\bar{B}_{k}\left(R_{i}\right)=\bar{B}_{k}\left(R_{0}\right)\left(\frac{R_{0}}{R_{i}}\right)^{t_{k}}, \tag{2}
\end{equation*}
$$

where t_{k} is a power and $\bar{B}_{k}\left(R_{0}\right)$ is the intrinsic model parameter corresponding to a certain mean distance R_{0}, usually assumed to be equal to the sum of the ion radii of the magnetic ion and ligand. If the equilibrium positions of F^{-}with respect to the Yb^{3+} impurity ions are specified, then the values of t_{k} and $\bar{B}_{k}\left(R_{0}\right)$ can be determined from the parameters of the crystal field of the T_{c} in a series of the $\mathrm{CaF}_{2}, \mathrm{SrF}_{2}$ and BaF_{2} isomorphic crystals. These parameters are shown in table 4. Distances to the nearest neighbours $\left(\mathrm{R}_{\mathrm{Yb}-\mathrm{F}}\right)$ can be obtained either empirically by measuring the A_{s} and A_{p} parameters of the ligand hyperfine structure and assuming that they follow certain exponential laws similar to (2) [19-21], or by the theoretical calculations, minimizing the energy of this or that lattice complex including the centre under consideration, as in [22-24]. The A_{s} and A_{p} parameters of T_{c} in fluorites [24] are not specified correctly enough to use, for example, the procedure [21] for determining $\mathrm{R}_{\mathrm{Yb}-\mathrm{F}}$ (the method, suggested in [19], does not give the linear dependences for this case). Therefore, it seems reasonable to use theoretical data of [23] to determine the values of $\mathrm{R}_{\mathrm{Yb}-\mathrm{F}}$, since the results of this work for the $\mathrm{Eu}^{2+}, \mathrm{Gd}^{3+}$ and Tm^{2+} ions agree very well with the calculations carried out in [25] for the same ions in a more strict model.

Let us assume that the crystal field in cubic centres is formed only by the eight nearest ions of F^{-}and that the R_{1} distances from the Yb^{3+} ion to these ions in $\mathrm{CaF}_{2}, \mathrm{SrF}_{2}$ and BaF_{2} are equal to $2.2907,2.3194$ and $2.3478 \AA$, respectively [24]. Then, for the intrinsic parameters of the 4th- and 6th-order (in cm^{-1}) for variant I we will have: $\bar{B}_{4}\left(R_{1}\right) \rightarrow 68.75,62.76$, 58.68; $\bar{B}_{6}\left(R_{1}\right) \rightarrow 19.03,17.12,14.90$. Logarithmic dependences of the numerical values of these parameters as the logarithmic functions of numerical values of the R_{1} distances, are well extrapolated by the straight lines, their inclinations giving the values $t_{4}=6.4 \pm 0.5$ and $t_{6}=9.9 \pm 0.9$ for the powers in (2). It should be noted that the values t_{4} and t_{6} are very close to $t_{4}=6.3 \pm 1.4$ and $t_{6}=10.1 \pm 1.1$ for the $\mathrm{Er}^{2+}, \mathrm{Dy}^{3+}$ and Tb^{2+} ions in the

Table 4. Parameters (in cm^{-1}) of crystal field (B_{4}, B_{6}) and the spin-orbit interaction (ξ) for T_{c} in MeF_{2}.

Crystal	Lattice constant$a_{0}(\AA)[20]$	ξ		B_{4}		B_{6}	
		I	II	I	II	I	II
$\mathrm{CaF}_{2}[4,9]$	5.443	2908.9		-213.9		33.8	
SrF_{2}	5.780	2908.4	2911.2	-195.3	-190.2	30.4	31.9
$\beta-\mathrm{PbF}_{2}$ [5]	5.901	2907.3		-196.0		24.8	
BaF_{2}	6.178	2909.0	2911.5	-182.6	-175.1	26.5	30.0

same crystals [16]. Then, taking the sum of ion radii of the Yb^{3+} and F^{-}ions to be equal to $R_{0}=2.295 \AA$ [26], we find the intrinsic parameters of the model from the equation of straight lines $\bar{B}_{4}\left(R_{0}\right)=\bar{B}_{4}=67.7 \pm 2.4 \mathrm{~cm}^{-1}$ and $\bar{B}_{6}\left(R_{0}\right)=\bar{B}_{6}=18.8 \pm 4.1 \mathrm{~cm}^{-1}$.

In the nearest surrounding cube, the $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$ and F_{4} ions take up positions with the coordinates $R_{1}=R_{2}=R_{3}=R_{4}, \vartheta_{1}=0, \vartheta_{2}=\vartheta_{3}=\vartheta_{4}=109.47^{\circ}(\sin \vartheta / 2=\sqrt{2 / 3}$, $\cos \vartheta / 2=\sqrt{1 / 3}), \phi_{2}=60^{\circ}, \phi_{3}=180^{\circ}, \phi_{4}=300^{\circ}$ in the system of coordinates of T_{4}, while the coordinates of the next four $\mathrm{F}_{5}, \mathrm{~F}_{6}, \mathrm{~F}_{7}$ and F_{8} ions, are as follows: $R_{5}=R_{6}=R_{7}=R_{8}=R_{1}, \vartheta_{5}=\vartheta_{6}=\vartheta_{7}=70.53^{\circ}(\sin \vartheta / 2=\sqrt{1 / 3}, \cos \vartheta / 2=\sqrt{2 / 3})$, $\vartheta_{8}=0, \phi_{5}=120^{\circ}, \phi_{6}=240^{\circ}, \phi_{7}=0$. In the analysis given below, it is supposed that when T_{4} is formed, the R_{5} and ϑ_{5} coordinates of the $\mathrm{F}_{5}, \mathrm{~F}_{6}, \mathrm{~F}_{7}$ ions, as well as the R_{8} distance to the axial F_{8} ion, change. Within the frame of the SM , one more term is added to the expression (1) in summation with respect to i, due to the appearance of the F_{9} ioncompensator located at the R_{9} distance from the Yb^{3+} ion. The changes of the crystal field parameters $\Delta B_{k}^{q}=B_{k}^{q}\left(\mathrm{~T}_{4}\right)-B_{k}^{q}\left(\mathrm{~T}_{\mathrm{c}}^{\text {trig }}\right)$, taking place in this case, are described by the following system of equations:

$$
\begin{align*}
& \Delta B_{4}^{0}=3 \bar{B}_{4}\left(R_{5}\right) K_{4}^{0}\left(\vartheta_{5}\right)+\bar{B}_{4}\left(R_{8}\right)+\bar{B}_{4}\left(R_{9}\right)-\frac{28}{27} \bar{B}_{4}\left(R_{1}\right) \\
& \Delta B_{4}^{3}=3 \bar{B}_{4}\left(R_{5}\right) K_{4}^{3}\left(\vartheta_{5}\right)-\frac{560 \sqrt{2}}{27} \bar{B}_{4}\left(R_{1}\right) \\
& \Delta B_{6}^{0}=3 \bar{B}_{6}\left(R_{5}\right) K_{6}^{0}\left(\vartheta_{5}\right)+\bar{B}_{6}\left(R_{8}\right)+\bar{B}_{6}\left(R_{9}\right)-\frac{128}{81} \bar{B}_{6}\left(R_{1}\right) \tag{3}\\
& \Delta B_{6}^{3}=3 \bar{B}_{6}\left(R_{5}\right) K_{6}^{3}\left(\vartheta_{5}\right)+\frac{1120 \sqrt{2}}{81} \bar{B}_{6}\left(R_{1}\right) \\
& \Delta B_{6}^{6}=3 \bar{B}_{6}\left(R_{5}\right) K_{6}^{6}\left(\vartheta_{5}\right)-\frac{1223}{81} \bar{B}_{6}\left(R_{1}\right) .
\end{align*}
$$

From this system, taking into account the values of ΔB_{k}^{q}, given in table 5 , one can obtain, in principle, the $R_{5}, \vartheta_{5}, R_{8}$ and R_{9} parameters, characterizing the structure of T_{4}. In the potential of T_{4}, the B_{2}^{0} parameter also appears, which was absent in T_{c}. However, the use of the equation for that parameter would lead one beyond the frame of the ligand SM [15, 16]. (A substantial contribution to the value of the B_{2}^{0} parameter means that the magnetic ion interacts (mainly electrostatically) with the more distant ions of the lattice and not only with the nearest nine F^{-}ions under consideration.) We may assume, that the dependences (2) for the $\bar{B}_{4}\left(R_{8}\right)$ and $\bar{B}_{6}\left(R_{8}\right)$ parameters in the system (3) will be valid, with the same t_{4} and t_{6} powers and $\bar{B}_{4}\left(R_{0}\right)$ and $\bar{B}_{6}\left(R_{0}\right)$ intrinsic parameters as for the values of $\bar{B}_{4}\left(R_{5}\right)$ and $\bar{B}_{6}\left(R_{5}\right)$. However, for the values of $\bar{B}_{4}\left(R_{9}\right)$ and $\bar{B}_{6}\left(R_{9}\right)$, the set of corresponding parameters will be, naturally, different, due to the R_{9} distance to the ion-compensator being almost twice as much as R_{8}. At such distances the contact interactions, caused by the covalence and overlap of the electron shells, considerably decay and the pure electrostatic effects will become quite important. These effects lead to the change in the sign of the $\bar{B}_{4}\left(R_{9}\right)$ and $\bar{B}_{6}\left(R_{9}\right)$ values at
the certain R_{9} distances. In this case, in the frame of the ligand SM, the $\bar{B}_{4}\left(R_{9}\right)$ and $\bar{B}_{6}\left(R_{9}\right)$ values cannot be obtained in principle, since the intrinsic parameters and the structure factors for the F_{9} ion are positive. Therefore, the system (3) can be solved under the assumption that the $\bar{B}_{4}\left(R_{9}\right)$ and $\bar{B}_{6}\left(R_{9}\right)$ values are the unknown parameters of the theory. Writing the system in the form
$3 \bar{B}_{4}\left(\frac{2.295}{R_{5}}\right)^{6.4} 35 \sin ^{3} \vartheta_{5} \cos \vartheta_{5}-\frac{560 \sqrt{2}}{27} \bar{B}_{4}\left(R_{1}\right)-\Delta B_{4}^{3}=0$
$3 \bar{B}_{6}\left(\frac{2.295}{R_{5}}\right)^{9.9} \frac{105}{8} \sin ^{3} \vartheta_{5} \cos \vartheta_{5}\left(11 \cos ^{2} \vartheta_{5}-3\right)+\frac{1120 \sqrt{2}}{81} \bar{B}_{6}\left(R_{1}\right)-\Delta B_{6}^{3}=0$
$3 \bar{B}_{6}\left(\frac{2.295}{R_{5}}\right)^{9.9} \frac{231}{32} \sin ^{6} \vartheta_{5}-\frac{1232}{81} \bar{B}_{6}\left(R_{1}\right)-\Delta B_{6}^{6}=0$
$\frac{3}{8} \bar{B}_{4}\left(\frac{2.295}{R_{5}}\right)^{6.4}\left(35 \cos ^{4} \vartheta_{5}-30 \cos ^{2} \vartheta_{5}+3\right)+\bar{B}_{4}\left(\frac{2.295}{R_{8}}\right)^{6.4}$

$$
\begin{gathered}
\frac{3}{16} \bar{B}_{6}\left(\frac{2.295}{R_{5}}\right)^{-\frac{28}{27} \bar{B}_{4}\left(R_{1}\right)+\bar{B}_{4}\left(R_{9}\right)-\Delta B_{4}^{0}=0}\left(231 \cos ^{6} \vartheta_{5}-315 \cos ^{4} \vartheta_{5}+105 \cos ^{2} \vartheta_{5}-5\right)+\bar{B}_{6}\left(\frac{2.295}{R_{8}}\right)^{9.9} \\
-\frac{128}{81} \bar{B}_{6}\left(R_{1}\right)+\bar{B}_{6}\left(R_{9}\right)-\Delta B_{6}^{0}=0
\end{gathered}
$$

one can use it to find five quantities: $R_{5}, \vartheta_{5}, R_{8}, \bar{B}_{4}\left(R_{9}\right)$ and $\bar{B}_{6}\left(R_{9}\right)$. As our estimations show (carried out in a point approximation), the absolute values of the $\bar{B}_{4}\left(R_{9}\right)$ and $\bar{B}_{6}\left(R_{9}\right)$ parameters are small and cannot exceed several cm^{-1}. Taking this into account, we obtain by solving the system (4) for the $\mathrm{SrF}_{2}: R_{5}=2.36 \pm 0.03 \AA, \vartheta_{5}=67 \pm 4^{\circ}, R_{8}=2.21 \pm 0.04 \AA$, $\bar{B}_{4}\left(R_{9}\right)=-0.8 \mathrm{~cm}^{-1}, \bar{B}_{6}\left(R_{9}\right)=-0.02 \mathrm{~cm}^{-1}$ and for the $\mathrm{BaF}_{2}: R_{5}=2.38 \pm 0.05 \AA$, $\vartheta_{5}=69 \pm 5^{\circ}, R_{8}=2.28 \pm 0.06 \AA, \bar{B}_{4}\left(R_{9}\right)=-0.6 \mathrm{~cm}^{-1}, \bar{B}_{6}\left(R_{9}\right)=-0.02 \mathrm{~cm}^{-1}$. A comparison of $R_{5}, \vartheta_{5}, R_{8}$ values with the coordinates in undoped crystals ($2.503 \AA, 70.53^{\circ}$, $2.503 \AA$ [23] and $2.675 \AA, 70.53^{\circ}, 2.675 \AA$ [24]) shows that three fluorine ions from the nearest surrounding cube, located symmetrically with respect to the C_{3} axis from the side of the ion-compensator, approach the impurity ion and cling to the axis of the centre when T_{4} is formed in the SrF_{2} and BaF_{2} crystals. In SrF_{2}, lattice angular distortions are more substantial. It should be noted, however, that the clinging of the fluorine ions to the axis of the centre is not strict, since an inaccuracy of the $\vartheta_{5}\left(\Delta \vartheta_{5} \sim 5^{\circ}\right)$ angles calculated exceeds the obtained change of these angles $\left(\Delta \sim 3^{\circ}\right)$ when T_{4} is formed. The R_{8} distances obtained demonstrate a considerable movement of the F_{8} axial ion towards the Yb^{3+} impurity ion. Theoretical values of the $B_{4}^{0}, B_{4}^{3}, B_{6}^{0}, B_{6}^{3}$ and B_{6}^{6} crystal field parameters on the basis of the $R_{5}, \vartheta_{5}, R_{8}, \bar{B}_{4}\left(R_{9}\right)$ and $\bar{B}_{6}\left(R_{9}\right)$ values obtained for T_{4} are given in table 5 in lines ' $\mathrm{T}_{4}(\mathrm{SM}) \mathrm{I}$ '. It is shown that the differences between the theoretical values and experimental ones are not so large and the 4th-order parameters are described very well.

If we repeat all the calculations, taking parameters II as the initial parameters of the crystal field, we have for the intrinsic parameters of the 4th- and 6th-order (in cm^{-1}): $\bar{B}_{4}\left(R_{1}\right) \rightarrow 68.75,61.15,56.27 ; \bar{B}_{6}\left(R_{1}\right) \rightarrow 19.03,17.97,16.94$. For the powers in equation (2) we find $t_{4}=8.2 \pm 0.8$ and $t_{6}=4.7 \pm 0.1$, which differ strongly from those in [16] and parameters I. Moreover, $t_{6}<t_{4}$, which contradicts the point model of the crystal field predicting $t_{6}>t_{4}$. This situation took place previously in [27] in which the SM was used to interpret the crystal field parameters of all series of the rare-earth trivalent ions in $\mathrm{LaCl}_{3}: \mathrm{Ln}^{3+}$ and $\mathrm{Cs}_{2} \mathrm{NaYCl}_{3}: \mathrm{Ln}^{3+}$. The following values for the model intrinsic parameters were obtained: $\bar{B}_{4}\left(R_{0}\right)=\bar{B}_{4}=67.4 \pm 3.5 \mathrm{~cm}^{-1}$ and $\bar{B}_{6}\left(R_{0}\right)=\bar{B}_{6}=18.9 \pm 1.1 \mathrm{~cm}^{-1}$. The solution of the system (3) for the SrF_{2} crystal gives: $R_{5}=2.36 \pm 0.02 \AA, \vartheta_{5}=66 \pm 1^{\circ}, R_{8}=2.20 \pm 0.03 \AA$, $\bar{B}_{4}\left(R_{9}\right)=-0.8 \mathrm{~cm}^{-1}, \bar{B}_{6}\left(R_{9}\right)=-0.02 \mathrm{~cm}^{-1}$ and for the $\mathrm{BaF}_{2}: R_{5}=2.39 \pm 0.02 \AA$,

Table 5. Parameters (in cm^{-1}) of the crystal field $\left(B_{k}^{q}\right)$ and the spin-orbit interaction (ξ) for T_{c} and T_{4} in SrF_{2} and $\mathrm{BaF}_{2} . \Delta B_{k}^{q}=B_{k}^{q}\left(\mathrm{~T}_{4}\right)-B_{k}^{q}\left(\mathrm{~T}_{\mathrm{c}}^{\text {trig }}\right)$ where $\mathrm{T}_{\mathrm{c}}^{\text {trig }}$ denotes cubic parameters in the trigonal axes.

Crystal			ξ	B_{2}^{0}	B_{4}^{0}	B_{4}^{3}	B_{6}^{0}	B_{6}^{3}	B_{6}^{6}
SrF_{2}	$\mathrm{~T}_{4}$		2911.2	101	139	3644	64	-551	487
	$\mathrm{~T}_{4}(\mathrm{SM})$	I			139	3645	67	-570	453
	$\mathrm{~T}_{\mathrm{c}}^{\text {trig }}$		2908.4	0	130	3682	54	-670	521
	ΔB_{k}^{q}			101	9	-38	10	119	-34
	$\mathrm{~T}_{4}(\mathrm{SM})$	II			138	3536	66	-587	480
	$\mathrm{~T}_{\mathrm{c}}^{\text {rrig }}$		2911.2	0	126	3586	57	-703	547
	ΔB_{k}^{q}			100	13	58	7	152	-60
BaF_{2}	$\mathrm{~T}_{4}$		2909.5	101	125	3347	58	-515	449
	$\mathrm{~T}_{4}(\mathrm{SM})$	I			128	3348	53	-536	418
	$\mathrm{~T}_{\mathrm{c}}^{\text {trig }}$		2909.0	0	122	3443	47	-583	453
	ΔB_{k}^{q}			101	3	-96	11	68	-4
	$\mathrm{~T}_{4}(\mathrm{SM})$	II			126	3256	64	-521	441
	$\mathrm{~T}_{\mathrm{c}}^{\text {trig }}$		2911.4	0	117	3301	53	-660	514
	ΔB_{k}^{q}			101	8	46	5	145	-65

$\vartheta_{5}=65 \pm 1^{\circ}, R_{8}=2.21 \pm 0.03 \AA, \bar{B}_{4}\left(R_{9}\right)=-0.7 \mathrm{~cm}^{-1}, \bar{B}_{6}\left(R_{9}\right)=-0.02 \mathrm{~cm}^{-1}$. The picture of deformations in the vicinity of the paramagnetic ion in II is qualitatively the same as in I. The clinging of the fluorine ion at the axis of the centre in II is undoubted since the inaccuracy in the angle values, ϑ_{5}, does not exceed 1°. Theoretical values of the $B_{4}^{0}, B_{4}^{3}, B_{6}^{0}$, B_{6}^{3} and B_{6}^{6} crystal field parameters are given in table 5 in lines ' $\mathrm{T}_{4}(\mathrm{SM})$ II'. The differences between theoretical and experimental values are again not so large, however, in this case, unlike for parameters I, the 6th-order parameters are better described.

4. Conclusion

Crystals of the fluorine homological series $\left(\mathrm{SrF}_{2}\right.$ and $\left.\mathrm{BaF}_{2}\right)$, doped with the ytterbium ions, forming T_{c} and T_{4} were investigated by EPR and optical spectroscopy. To increase the reliability in the interpretation of the Yb^{3+} optical spectra, crystals with different concentrations of ytterbium, crystal annealing and also the LSE technique were used. A weak intensity of one of the optical transition in T_{c} led to ambiguity in the interpretation of the potential of the crystal field of the cubic symmetry. To estimate the crystal lattice distortion near the Yb^{3+} impurity ion for T_{4}, a SM was applied. Both variants of the potential of the crystal field of the cubic symmetry resulted in the same picture of deformations surrounding the paramagnetic ion. When T_{4} is formed, three fluorine ions from the first coordinate sphere ($\mathrm{F}_{5}-\mathrm{F}_{7}$) approach the impurity ion and cling to the axis of the centre. The fluorine ion, located at the PC axis between the Yb^{3+} ion and the ion-compensator (F_{9}), approach close to the impurity ion as well. This structural model of T_{4} does not agree with the results presented in [28, 29] for the analogous PC of the Gd^{3+} ion in BaF_{2} crystal.

Acknowledgment

This work was supported by the Russian Foundation for Basic Research (project No 02-0216648).

References

[1] Ranon A and Yaniv U 1964 Phys. Lett. 9 17-19
[2] Berulava B G, Mirianashvili P I, Nazarova O V and Sanadze T I 1977 Fiz. Tverd. Tela 19 1771-4
[3] Kirton J and White A M 1969 Phys. Rev. 178 543-7
[4] Anderson C H 1974 Crystal With the Fluorite Structure ed W Hayes (Oxford: Clarendon) ch 5 Baker J M 1974 Crystal With the Fluorite Structure ed W Hayes (Oxford: Clarendon) ch 6
[5] Gerasimov K I, Leushin A M and Falin M L 2001 Phys. Solid State 43 1675-9
[6] Falin M L, Gerasimov K I, Leushin A M, Bill H, Lovy D and Sanadze T 2001 J. Alloys Compounds 323/324 692-5
[7] Latypov V A and Falin M L 2001 Prib. Tehn. Eksp. 4 164-6 (in Russian)
[8] Falin M L, Gerasimov K I, Kazakov B N and Yakshin M A 1999 Appl. Magn. Reson. 17 103-12
[9] Kiro D and Low W 1970 Magnetic Resonance ed C K Coogan, N S Ham, S N Stuart, J R Pilbrow and G V H Wilson (New York: Plenum) pp 247-69
[10] Stevens K W H 1952 Proc. Phys. Soc. A 65209
[11] Rudowicz C 1987 Magn. Reson. Rev. 13 1-89
[12] Pearson J J, Herrman G F, Wickersheim K A and Buchanan R A 1967 Phys. Rev. 159 251-61
[13] Nazarova O V and Sanadze T I 1978 Fiz. Tverd. Tela 20 620-2
[14] Nazarova O V and Sanadze T I 1977 Bull. Acad. Sci. Georgian SSR, Phys. 8 329-32
[15] Newman D J 1971 Adv. Phys. 20 197-256
[16] Newman D J 1978 Aust. Phys. 31 79-93
[17] Newman D J 1980 Aust. Phys. 33 733-43
[18] Rudowicz C 1987 J. Phys. C: Solid State Phys. 20 6033-7
[19] Anderson C H, Call P, Stott J and Hayes W 1975 Phys. Rev. B 11 3305-10
[20] Baker J M 1979 J. Phys. C: Solid State Phys. 12 4039-49
[21] Falin M L, Meiklyar V P and Konkin A L 1980 J. Phys. C: Solid State Phys. 13 1299-303
[22] Ivanenko Z I and Malkin B Z 1970 Sov. Phys.-Solid State 11 1498-503
[23] Tovar M, Ramos C A and Fainstein C 1983 Phys. Rev. B 28 4813-17
[24] Ramos C A, Fainstein C and Tovar M 1985 Phys. Rev. B 32 64-8
[25] Yeung Y Y 1988 J. Phys. C: Solid State Phys. 21 L549-53
[26] Shannon R D 1976 Acta Crystallogr. B 32 751-67
[27] Reid M F and Richardson F S 1985 J. Chem. Phys. 83 3831-6
[28] Gorlov A D and Potapov A P 2000 Phys. Solid State 42 51-4
[29] Gorlov A D, Guseva A D, Potapov A P and Rokeah A I 2001 Phys. Solid State 43 473-9

